首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4849篇
  免费   578篇
  国内免费   359篇
  2023年   23篇
  2022年   46篇
  2021年   155篇
  2020年   146篇
  2019年   179篇
  2018年   184篇
  2017年   157篇
  2016年   192篇
  2015年   287篇
  2014年   296篇
  2013年   312篇
  2012年   441篇
  2011年   396篇
  2010年   271篇
  2009年   256篇
  2008年   306篇
  2007年   258篇
  2006年   224篇
  2005年   239篇
  2004年   237篇
  2003年   241篇
  2002年   223篇
  2001年   171篇
  2000年   116篇
  1999年   101篇
  1998年   49篇
  1997年   40篇
  1996年   28篇
  1995年   18篇
  1994年   27篇
  1993年   8篇
  1992年   21篇
  1991年   15篇
  1990年   11篇
  1989年   7篇
  1988年   13篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1983年   5篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1970年   4篇
  1969年   5篇
  1967年   5篇
排序方式: 共有5786条查询结果,搜索用时 93 毫秒
91.
Interleukin‐27 (IL‐27) gene polymorphisms are linked to infectious disease susceptibility and IL‐27 plasma level is associated with HIV infection. Therefore, we aimed to investigate the association between IL‐27 polymorphisms and susceptibility to HIV infection and disease progression. A total of 300 patients with HIV infection (48 long‐term nonprogressors and 252 typical progressors) and 300 healthy controls were genotyped for three IL‐27 polymorphisms, rs17855750, rs181206, rs40837 which were performed by using multiple single nucleotide primer extension technique. Significant association was found between IL‐27 rs40837 polymorphisms with susceptibility to HIV infection (AG vs AA: adjusted OR = 1.60, 95% CI, 1.11‐2.30, = 0.012; AG+GG vs AA: adjusted OR = 1.44, 95% CI, 1.02‐2.03, P = 0.038) and disease progression (LTNP: AG vs AA: adjusted OR = 2.33, 95% CI, 1.13‐4.80, P = 0.021; TP: AG vs AA: adjusted OR = 1.50, 95% CI, 1.04‐2.24, P = 0.030). Serum IL‐27 levels were significantly lower in cases compared to controls (< 0.001). There were lower serum IL‐27 levels in TPs than in LTNPs (< 0.001). We further found that LTNPs with rs40837 AG or GG genotype had lower serum IL‐27 levels than with AA genotype (< 0.05). The CD4+T counts in cases were significantly lower than controls (< 0.001). In contrast, individuals with rs40837 AG genotype had lower CD4+T counts than with AA genotype in cases (< 0.05). In addition, CD4+T counts in TPs were significantly lower than LTNPs (< 0.001). IL‐27 rs40837 polymorphism might influence the susceptibility to HIV infection and disease progression probably by regulating the level of serum IL‐27 or the quantity of CD4+T.  相似文献   
92.
Controlling electrochemical deposition of lithium sulfide (Li2S) is a major challenge in lithium–sulfur batteries as premature Li2S passivation leads to low sulfur utilization and low rate capability. In this work, the solvent's roles in controlling solid Li2S deposition are revealed, and quantitative solvent‐mediated Li2S growth models as guides to solvent selection are developed. It is shown that Li2S electrodeposition is controlled by electrode kinetics, Li2S solubility, and the diffusion of polysulfide/Li2S, which is dictated by solvent's donicity, polarity, and viscosity, respectively. These solvent‐controlled properties are essential factors pertaining to the sulfur utilization, energy efficiency and reversibility of lithium–sulfur batteries. It is further demonstrated that the solvent selection criteria developed in this study are effective in guiding the search for new and more effective electrolytes, providing effective screening and design criteria for computational and experimental electrolyte development for lithium–sulfur batteries.  相似文献   
93.
Serious environmental problems, growing demand for energy, and the pursuit of environmental‐friendly, sustainable, and effective energy technologies to store and transform clean energy have all drawn great attention recently. As a part of the special issue “Energy Research in National Institute of Advanced Industrial Science and Technology (AIST)” this review systematically summarizes the research progress of metal–organic framework (MOF) composites and derivatives in energy applications, including catalytic CO oxidation, liquid‐phase chemical hydrogen storage, and electrochemical energy storage and conversion. Furthermore, the correlation between MOF‐based structures, synthetic strategies, and their corresponding performances is carefully discussed. The further scope and opportunities, expected improvements and challenges are also discussed. This review will not only benefit development of more feasible protocols to fabricate nanostructures for energy systems but also stimulate further interest in MOF composites and derivatives, for energy applications.  相似文献   
94.
MXene, a new class of 2D materials, has gained significant attention owing to its attractive electrical conductivity, tunable work function, and metallic nature for wide range of applications. Herein, delaminated few layered Ti3C2Tx MXene contacted Si solar cells with a maximum power conversion efficiency (PCE) of ≈11.5% under AM1.5G illumination are demonstrated. The formation of an Ohmic junction of the metallic MXene to n+‐Si surface efficiently extracts the photogenerated electrons from n+np+‐Si, decreases the contact resistance, and suppresses the charge carrier recombination, giving rise to excellent open‐circuit voltage and short‐circuit current density. The rapid thermal annealing process further improves the electrical contact between Ti3C2Tx MXene and n+‐Si surface by reducing sheet resistance, increasing electrical conductivity, and decreasing cell series resistance, thus leading to a remarkable improvement in fill factor and overall PCE. The work demonstrated here can be extended to other MXene compositions as potential electrodes for developing highly performing solar cells.  相似文献   
95.
Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.  相似文献   
96.
Odoroside A (OA) is an active ingredient extracted from the leaves of Nerium oleander Linn. (Apocynaceae). This study aims to examine the anticancer bioactivity of OA against CRC cells and to investigate the action mechanisms involved. As a result, OA can significantly inhibit cellular ability and induce apoptosis of CRC cells in a concentration‐dependent manner without any obvious cytotoxicity in normal colorectal epithelial cells. Then, quantitative proteomics combined with bioinformatics is adopted to investigate the alterations of proteins and signaling pathways in response to OA treatment. As suggested by the proteomic analysis, flow cytometry and Western blotting analyses validate that exposure of CRC cells to OA causes cell cycle arrest and apoptosis, accompanied with the activation of the ROS/p53 signaling pathway. This observation demonstrates that OA, as a natural product, can induce oxidative stress to suppress tumor cell growth, implicating a novel therapeutic agent against CRC without obvious side effects.  相似文献   
97.
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio.  相似文献   
98.
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.  相似文献   
99.
Basement membrane thickening, glomerular hypertrophy, and deposition of multiple extracellular matrix characterize the pathological basis of diabetic nephropathy (DN), a condition which ultimately leads to glomerular and renal interstitial fibrosis. Here, we identified a novel microRNA, miR-130b, and investigated its role and therapeutic efficacy in alleviating DN. Introduction of miR-130b dramatically increased cell growth and fibrosis in DN cells. We found that transforming growth factor (TGF)-β1 was a functional target of miR-130b in human glomerular mesangial cells (HMCs) and overexpression of miR-130b increased expressions of the downstream signaling molecules of TGF-β1, t-Smad2/3, p-Smad2/3, and SMAD4. An ectopic application of miR-130b increased messenger RNA and protein expressions of collagen type I (colI), colIV, and fibronectin, whose expression levels were correlated with the expression of miR-130b. Taken together, the findings of this study reveal that miR-130b in HMC cells plays an important role in fibrosis regulation and may thus be involved with the pathogenesis of DN. Therefore, miR-130b may serve as a novel therapeutic target for the prevention and the treatment of DN.  相似文献   
100.
Sustained exposure to high glucose (HG) results in dysfunction of vascular endothelial cells. Hence, diabetic patients often suffer from secondary vascular damages, such as vascular sclerosis and thrombogenesis, which may eventually cause cardiovascular problems. Thus, elucidating how HG results in vascular endothelial cell damage and finding an approach for prevention are important to prevent and treat vascular damages in diabetic patients. In the current study, we first showed that 72-hour exposure to HG-decreased hsa-miRNA-29a and increased the expression of Bcl-2 associated X protein (Bax), which subsequently inhibited Bcl-2 and promoted the expression of apoptotic protease activating factor-1 and activation of caspase-3, thus directly triggering the mitochondrial apoptotic pathway in human umbilical vein endothelial cells (HUVECs). Study of the underlying mechanism showed that hsa-miRNA-29a/Bax plays an essential role in the decreased proliferation and increased apoptosis of HUVECs induced by HG, and overexpression of hsa-miRNA-29a effectively inhibits HG-induced apoptosis and restores the proliferation and tube formation of HUVECs exposed to HG by inhibiting its target gene Bax. In short, our study demonstrates that hsa-miRNA-29a is a promising target for the prevention and treatment of vascular injury in diabetic patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号